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Abstract. This paper presents a detailed study of the electron degeneracy and nonlin-
ear screening effects which play a crucial role in the validity of Salpeter’s weak-screening
model. The limitations of that model are investigated and an improved one is proposed
which can take into account nonlinear screening effects. Its application to the solar pp
reaction derives an accurate screening enhancement factor and provides a very reliable
estimation of the associated neutrino flux uncertanties.
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1 Introduction

Thermonuclear reactions constitute the source of stellar energy and all the laws
that govern such reactions deserve to be thoroughly investigated. The enhancing
influence of stellar plasmas on thermonuclear reaction rates has been studied
by many authors ([1]–[7], and references therein) who derive corrective factors
(known as Screening Enhancement Factors:SEFs) by which the reaction rates
are multiplied in order to take into account screening effects. There is a variety
of models, each of which has inherent limitations, while some of them have been
the subject of intense controversy [8].

The most widely used screening models are Salpeter’s weak screening (WS)
model (S) [1] and Mitler’s one (M) [2], the latter covering the effect at all densi-
ties. Actually these models are used in solar evolution codes giving quantitative
estimates of the neutrino flux uncertainties associated with the screening effect
[3, 9]. However, there are still sources of uncertainty originating from these mod-
els which have not been dealt with. In a very important study [10] of solar fusion
cross section it was admitted that a satisfactory analytical investigation of elec-
tron degeneracy and nonlinear screening effects for Salpeter’s model is not yet
available. This paper satisfies that need and investigates the relevant effects on
solar neutrino fluxes.
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The double aim of this paper is a) to present a detailed study of how degen-
eracy affects Salpeter’s thermonuclear screening formalism, b) to quantitatively
investigate the nonlinear screening effects disregarded by Salpeter’s model, avoid-
ing at the same time Mitler’s arbitrary assumption that in all stellar plasmas
the charge density around the reacting nuclei is equal to the average electron
density in the plasma.

The layout of the paper is as follows:
In Sect. 2 there is a very brief introduction to the fundamental assumptions

of the Thomas-Fermi (TF) theory in screened stellar plasmas, which will be most
useful in highlighting the limitations of the existing models and building a new
improved one. In Sect. 3, we derive Salpeter’s SEF for a WS non-degenerate
environment from the first principles of the TF theory, thus avoiding Salpeter’s
statistical approach (Boltzmann’s formula) which disregards the nonlinear terms
of Poisson’s equation. The TF theory is also employed in Sect. 4 where we de-
rive Salpeter’s SEF for a partially degenerate (PD) WS environment extracting
a new analytical degeneracy factor which avoids the complicated improper inte-
grals involved in the formulas currently used in stellar evolution codes and al-
lows a detailed study of degeneracy effects. In Sect. 5 we investigate the electron
degeneracy effects on SEFs defining quantitatively the following environments:
non-degenerate (ND), weakly degenerate (WD), intermediately degenerate (ID),
strongly degenerate (SD) and the completely degenerate (CD) one. In Sect. 6,
we prove that the definition of the WS limit (used by both the S and M mod-
els), which actually yields the Debye-Huckel (DH) potential, forbids the use of
that potential inside the tunneling region and the subsequent derivation of the S
model. The region of validity of the DH potential in stellar plasmas is obtained
by defining a tuning equation which can tune the accuracy of the weak-screening
limit at will. In Sect. 7 we design a new model for weakly screened thermonu-
clear reactions which is capable of taking into account the error associated with
nonlinear screening effects. In Sect. 8 we apply the new model to the solar pp re-
action and estimate the associated neutrino flux uncertainties. Finally, in Sect 9,
there is a thorough discussion of the new models and their results

2 The Thomas-Fermi model in screened astrophysical
plasmas

Let us assume that in a completely ionized stellar plasma each atom of element
A
ZM releases (Zi + 1) free particles in the gas, that is Zi electrons plus the
nucleus. The conditions of complete ionization impose the first constraint on the
calculations that follow. We adopt Salpeter’s quantitative interpretation [1] of
that assumption, namely:T6 >> 0.16Z2

i for all ions (i) in the plasma, where T6
is the plasma temperature in million Kelvins. On the other hand we assume that
for a particular thermonuclear reaction ignition does occur and since hydrogen
burning starts first we will consider temperatures higher than the hydrogen
ignition one, which, for unscreened reactions, is roughly [11] T6 � 10.

Let Ni be the number density of element (i), which is given as a func-
tion of plasma mass density ρ, fraction by weight Xi, and mass number Ai by
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the formula Ni = ρ (Xi/Ai) N0, N0 being Avogadro’s number. Then the to-
tal number density of free particles will be N =

∑
i Ni (Zi + 1) or else N =

ρN0
∑

i (Xi/Ai) (Zi + 1) . The number density of electrons (i = e) can then be
written Ne = ρN0

∑
i Zi (Xi/Ai) as well as Ne = ρN0/µe where we have used

the mean molecular weight per electron µe = 2 (1 + XH)−1, which should not be
confused with the electronic chemical potential. In a completely ionized plasma
the global charge density ρq =

∑
i Ni (Zie) will be

ρq =
∑

i �=e

NiZie − Nee = 0 (1)

which is the quantitative definition of plasma neutrality.
All ions obey the Fermi-Dirac statistics and therefore the distribution of ionic

momenta in thermal equilibrium will be:

ni (p) =
8πp2/h3

exp
[(

p2

2mi
− µi

)
/kT

]
+ 1

,

∫ ∞

0
ni (p) dp = Ni (2)

where ni (p) dp is the number of ions (i) with momenta lying within [p, p + dp]
and µi is the corresponding chemical potential defined by Eq. (2).

Plasma neutrality then reads:
∑

i �=e

Zi

∫ ∞

0
ni (p) dp −

∫ ∞

0
ne (p) dp = 0 (3)

where ne is the electron number density of all electrons at distance r from the
nucleus with total energy ε and momentum p (r), respectively.

After the (virtual) introduction of the point nucleus Z0e in the plasma the
charge neutrality condition no longer holds in the polarized vicinity of the nucleus
and now we need to define a local charge density given by

ρ̃q (r) =
∑

i

Ñi (Zie) =
∫ ∞

0




∑

i �=e

ñi (p) Zie − ñe (p) e



 dp (4)

which is actually a function of distance from the charge Z0e. The perturbed
quantities from now on will be denoted by tilded letters. The local number
densities (denoted now by ñe and ñi) will be modified in the sense that their
chemical potential will be shifted by −eZiΦ for nuclei and eΦ for electrons. Note
that plasma charge neutrality still holds so that the total charge Qtot defined by

Qtot =
∫ ∞

0
ρ̃ (r) 4πr2dr + Z0e (5)

is of course Qtot = 0.
The self-consistent screened Coulomb potential acting in the vicinity of the

polarizing nucleus is given by Poisson’s equation

∇2Φ (r) = −4πe

∫ ∞

0




∑

i �=e

ñi (p) Zie − ñe (p) e



 dp (6)
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The boundary conditions for the above equation are

lim
r→0

Φ (r) =
Z0e

r
, lim
r→∞ Φ (r) = 0 (7)

while the perturbed electron and ion densities will now be given by

ñe (p) =
8πp2/h3

exp
{[

p2

2me
− (µe + eΦ)

]
/kT

}
+ 1

(8)

and

ñi (p) =
8πp2/h3

exp
{[

p2

2mi
− (µi − eZiΦ)

]
/kT

}
+ 1

(9)

Our study will be greatly facilitated by the introduction of the degeneracy pa-
rameter ai for each ion defined as ai = −µi/kT , and ãi = − (µi − ZieΦ) /kT =
ai +eZiΦ/kT, respectively. Note that for electrons (i = e) we have assumed that
Ze = −1. The degeneracy parameter [12] gives us the degree of degeneracy of
a fermionic gas in a very transparent way. Using the Fermi-Dirac function of
one-half which is defined as

F1/2 (a) =
∫ ∞

0

u1/2du

exp (a + u) + 1
(10)

the number densities can now be written

Ni (a) =
4π

h3 (2mikT )3/2
F1/2 (a) (11)

3 Non-degenerate, weakly screened, non-relativistic
environment

For ai > 0 the electron gas is either in a WD or in ND state. Then we can write
[12]

F1/2 (ai) = −
√

π

2

∞∑

n=1

(−1)n
e−nai

n3/2 (12)

Let us further assume that there are some critical values a∗
e, a

∗
i so that for all

degeneracy parameters which satisfy the conditions

ae > a∗
e > 0, ai > a∗

i > 0 (13)

the second term of the series (n = 2) in Eq. (12) is negligible. Then obviously
for all these parameters we can retain only the first term of the above expansion
for F1/2, thus introducing the first linearization of the TF model which yields
the following number densities:

Ne (r) � Ne (ae) exp
(

eΦ (r)
kT

)

, Ni (r) � Ni (ai) exp
(−ZieΦ (r)

kT

)

(14)
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Under such conditions ions are always non-degenerate since ae � ai, so we should
focus solely on electron degeneracy from now dropping the index e when referring
to the electron degeneracy parameter. The error committed in the calculation of
the electron density by retaining only the first term in the expansion of F1/2 (a)
depends on the first neglected term, that is exp (−2a∗) /23/2 , thus for a∗ = 2 the
error is less than 1%. As will soon become obvious this ND limit is not enough for
the WD central solar plasma where the degeneracy parameter is smaller. Note
that Eqs. (14) are actually Boltzmann’s formulas so that we can now clearly
state that Boltzmann’s statistics is valid for the description of a fermionic gas
when ai ≥ 2.

The second linearization is actually based on the WS limit which is defined
as

eΦ (r)
kT

� 1,
ZieΦ (r)

kT
� 1 (15)

Note that these conditions, which are supposed to be valid at all relative dis-
tances between ions will soon be proved to be abused when used in the derivation
of the M and S SEFs.

Therefore, in a (WS, ND) stellar environment, disregarding nonlinear terms
in Eqs. (14), we have

Ne (r) � Ne (a)
(

1 +
eΦ (r)
kT

)

, Ni (r) � Ni (ai)
(

1 − ZieΦ (r)
kT

)

(16)

and of course Eq. (6) will be

∇2Φ (r) = −4πe




∑

i �=e

Ni (ai)
(

1 − ZieΦ (r)
kT

)

Zi − Ne (a)
(

1 +
eΦ (r)
kT

)


 (17)

Using the plasma neutrality condition we obtain

∇2Φ (r) =
4πe2

kT




∑

i �=e

Ni (ai) Z2
i + Ne (a)



 Φ (r) (18)

or else

∇2Φ (r) =
Φ (r)
R2

D

(19)

where

R−2
D =

4πe2

kT




∑

i �=e

Ni (ai) Z2
i + Ne (a)



 (20)

is the usual DH radius.
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In order to solve Eq. (19), we apply the boundary conditions given by Eq. (7)
deriving the well-known DH screened Coulomb potential

ΦDH (r) =
Z0e

r
exp (−r/RD) (21)

In such a case the SEF for the thermonuclear reaction A1
Z1

M +A0
Z0

M , is given as
usual by Salpeter’s formula [1]

fs = exp
(

Z1Z0e
2

kTRD

)

(22)

Note that Salpeter’s SEF was derived on two consecutive linearization steps
which are both based on the WS condition given by Ineq. (15). The first step is
taken in the actual derivation of the DH potential via Eqs. (16) while the second
one is taken when nonlinear terms of the DH potential expansion are disregarded
inside the integral of Eq. (51). The second step has been exhaustively studied
by the author [6] while the first one, whose validity is crucial to the validity of
the second one, will be investigated in the present paper.

4 Partially degenerate, weakly screened, non-relativistic
environment

Let us now assume a partially degenerate (PD) environment where a < 0. In
such a case the Fermi-Dirac functions can be simplified as follows[12]:

F1/2 (a) =
2
3

(−a)3/2
(

1 +
π2

8a2 +
7π4

640a4 ...

)

(23)

which are very accurate when a < −3 as they only commit an error of less than
1% in the calculation of electron density.

Again we would only be interested in electron degeneracy as nuclei are almost
always non-degenerate. Therefore for nuclei we still have

Ni (r) � Ni (ai) exp
(−ZieΦ (r)

kT

)

(24)

As for electrons, setting y = − (eΦ/akT ) > 0 we can write

F1/2 (ã) � 2
3

[− (a + y)]3/2
[

1 +
π2

8
(a + y)−2 +

7π4

640
(a + y)−4

]

(25)

where we have assumed that 0 < y � 1 so that y2 � 0. Retaining only terms up
to a−4 in the truncated form of F1/2 (a), after some tedious algebra the previous
equation yields

F1/2 (ã) � F1/2 (a)
[

1 + θ (a)
eΦ

kT

]

(26)

http://link.springer.de/link/service/journals/10050/index.htm
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where the degeneracy parameter 0 < θ (a) < 1 is given by

θ (a) =
3
2

(−a)−1 − 2
3

(−a)1/2

F1/2 (a)

(
π2

4a2 +
7π4

160a4

)

(27)

Being consistent with our initial approximation of F1/2 (a) , when a < −3 we
derive a very simple and handy formula, namely:

θ (a) = − 5
2a

384a4 − 16π2a2 − 7π4

640a4 + 80π2a2 + 7π4 (28)

If alternatively we keep only terms up to a−2 (just as in [13]) then we obtain

θ (a) =
− (

24a2 − π2
)

3a (8a2 + π2)
(29)

The electron number density now reads

Ne (r) = Ne (a)
[

1 + θ (a)
eΦ

kT

]

(30)

which replaces its ND form given by Eq. (16). Applying the same procedure as
in the ND case the DH radius in PD conditions assumes the usual form

R−2
D =

4πe2

kT




∑

i �=e

Ni (ai) Z2
i + θ (a) Ne (a)



 (31)

where now degeneracy is taken into account through Eq. (27) or its much simpler
form Eq. (28) in the right degeneracy conditions.

The quantity θ (a) is the degeneracy factor
(
F

′
1/2/F1/2

)
calculated numeri-

cally in [1] given here in an approximate analytic form which allows: A) a trans-
parent study of electron degeneracy effects in stellar plasmas and, B) a very fast
and easy way of calculating degeneracy effects in PD stellar gases. Note that the
calculation of the quantity

(
F

′
1/2/F1/2

)
delays the computing process in stellar

evolution codes due to the improper integrals involved. On the other hand Mitler
had to ”guess” his form of the degeneracy factor while here it is derived in a rigid
mathematical method.

Our novel degeneracy parameter has the right limit for non-relativistic CD
gases, just as noted in [1], namely

lim
a→−∞ θ (a) =

3
2

(−a)−1 = 5T6

(
ρ

µe

)−2/3

(32)

Admittedly, Mitler’s ingenious guess [2]

θ (a) =

[

1 +
4
9

[
3
2
F1/2 (a)

]4/3
]−1/2

(33)

http://link.springer.de/link/service/journals/10050/index.htm
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Fig. 1. The degeneracy factor as obtained through various approximations: The
solid curve represents Eq. (27) while the dotted curve represents the much sim-
pler formula given by Eq. (28). The dash-dot-dotted curve, which stands apart
from all other approximations, represents Eq. (29). The other curves represent
formulas which are in use nowadays, namely the dashed curve stands for Mitler’s
guessed formula given by Eq. (33) and the dash-dotted one is the limit for CD
stellar environments given by Eq. (32). The three vertical bars stand for three
different limits. The first one (labeled as 1) signifies the boundary of the present
model. To the right of that barrier Eq. (28) is no longer valid. The second one
(labeled as 2) represents the SD limit as defined by Ineq. (39), while the third
one (labeled as 3) is the threshold beyond which the gas is in a CD state and the
use of Eq. (32) is perfectly legitimate. The region labeled as ID (intermediate
degeneracy) is defined by a vertical bar at a = −2 (not shown) the degeneracy
parameter at which the ND and the CD electron gas pressures are equal

is correct within 2% over the entire stellar profile, just as he remarks. However,
the main shortcomings of his formula are A) It has been guessed and lacks math-
ematical rigor contrary to the present one, which is based on a well established
mathematical mechanism, B) It taxes heavily the computing process especially
in SD gases while ours, in the same regime, is a rational algebraic function.

In Fig. 1, we plot all available analytic formulas for the degeneracy parameter
θ (a) , namely Eqs. (27), (28), (29), (32), as well as Mitler’s formula given by
Eq. (33). Mitler’s guessed formula will serve as an index of accuracy for our
formulas. As regards the new formulas for degeneracy, in the region −2 < a, we
observe a rapid decrease of θ (a) although we know that for ND environments
θ (a) is supposed to tend to unity. This region is naturally outside the limits of
our formulas and is signified by the first vertical bar in Fig. 1. On the other hand

http://link.springer.de/link/service/journals/10050/index.htm



Eur Phys J A 18, s01, s1–s25 (2003) Springer-Verlag 9

it is obvious that for values a < −10 electron degeneracy is practically complete
and then the simple Eq. (32) should be used. The boundary of that completely
degenerate regime (CD) is represented by the third vertical bar (the regions
corresponding to the intermediate (ID) and strong degeneracy (SD) regime that
are shown in Fig. 1 will be defined in the next section). Note that as we remarked
at the beginning of this section the truncated form of F1/2 (a) yields an accurate
number density provided a < −3. This is now corroborated by the degeneracy
factor of our model which are shown in Fig. 1. and is indeed very accurate for
a < −3. In the analysis of Fig. 1 special attention should be paid to the dash-dot-
dotted curve corresponding to Eq. (29) as it is closely related to an important
relevant paper [13]. That paper derives screened Coulomb potentials for single
nuclei placed in a sea of electrons. If we neglect the presence of all other ions
but the central one, and keep only a−2 terms in our study then we recover the
screening radius obtained in [13]. This coincidence enables us to make full use
of the results of that work since we can study thermonuclear reactions in stellar
plasmas by adding to their purely electronic screening radii the effects of a ND
non-relativistic sea of positive (spectator) ions. However, as one can observe
from Fig. 1, if we follow the assumption of [13] retaining only terms of order
a−2 in the truncation of Eq. (23) then we derive a very poor description of the
degeneracy effects (i.e. Eq. (29). Therefore the study of thermal and relativistic
effects in dielectric screening given in [13] is not valid for weakly ND regimes as
the authors claim but for extremely degenerate regimes, where of course their
thermal correction

(
1 − π2/24a2

)
to the cold electron gas density is negligible.

The present paper improves their study and produces really significant thermal
corrections. Namely, the quantity

(
1 − π2/24a2

)
appearing in [13] should be

replaced by the much more accurate one derived in this paper:

3
2

(−a)−3/2
F1/2 (a) − 2

3

(
π2

4a2 +
7π2

1604

)

(34)

It is straightforward to prove that Eq. (34) coincides with
(
1 − π2/24a2

)
if we

only keep terms of order a−2.
We will now attempt to establish quantitatively the true limits of Salpeter’s

and Mitler’s formulas in terms of degeneracy and non-linear screening effects

5 Degeneracy effects

Since the value of a is related to the stellar environment through the following
relation [12]

log10

(
ρ

µe
T−3/2

)

= log10 F1/2 (a) − 8.044 (35)

we can write for all values (a ≥ a∗) the following inequality:

ρ

µe
≤ 109+Q(a∗)T

3/2
6 (36)

where Q (a∗) = log10 F1/2 (a∗) − 8.044.

http://link.springer.de/link/service/journals/10050/index.htm
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Obviously using Ineq. (36) we can define any degeneracy limit in an (ρ, T )
plane. Therefore, according to the previous discussion, it is plausible to define
the limit between ND and WD environments at a∗ = 2.

Inserting the value a∗ = 2 into Ineq. (36) we can derive here in a transparent
way the boundaries of the WD and the ND (weakly screened) environments

ρ

µe
≤ T

3/2
6 (37)

In ND gases (a > 2) no correction is needed for degeneracy while in WD ones
(−3 < a < 2) the electron density should inevitably be multiplied by the usual
value of θ (a) given by [1]

θ (a) = F−1
1/2 (a)

dF1/2 (a)
da

(38)

or Mitler’s Eq. (33), alternatively.
For instance for central solar condition (ρ/µe � 148, T6 � 15.6) the degener-

acy parameter is a = 1.1 while in the solar region of maximum energy production
(i.e. at a distance of 0.075 solar radii where T6 = 14 and ρ = 105 g/cm3), we
have a = 1.3. Obviously, the sun lies in the WD zone of the equation of state.

On the other hand, as we have shown, the strong degeneracy (SD) limit will
be obeyed if a ≤ −5 that is

ρ

µe
≥ 71T

3/2
6 (39)

and wherever this condition is valid we can use Eq. (28) to take into account
degeneracy effects.

As is obvious from Fig. 1, for a ≤ −10 the electron gas is completely degen-
erate and of course under such conditions

ρ

µe
≥ 193T

3/2
6 (40)

In that region Eq. (28) can be replaced by the much simpler Eq. (32.
The intermediate degeneracy (ID) limit is a straightforward result of the

condition that the electron pressure in a ND gas is equal to the electron pressure
in a CD gas, namely

ρ

µe
= 24T

3/2
6 (41)

In such a case the degeneracy parameter which defines this limit is a = −2
The limit for a fully relativistic degenerate electron gas [12] will define the

boundaries of the non-relativistic nature of our study

ρ

µe
> 7.3 × 106 (42)

Let us now assume a zero-metallicity hydrogen-helium plasma where we need
to examine the effects of degeneracy on Salpeter’s formula when applied to pp

http://link.springer.de/link/service/journals/10050/index.htm
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reactions. Thus, we assume that the target nucleus whose screened Coulomb
potential we need to derive is a proton (i.e. Z0 = 1). Then, the usual definition
of the weak screening condition (see Ineq. (15)) which actually yields the S model
is written

ZiZ0e
2

〈r〉i

exp
(

−〈r〉i

RD

)

� kT (43)

where i = H, He and 〈r〉i the interionic distance between H −H, H −He, respec-
tively. The average distance is easily shown to be of the same order of magnitude
as the inter-electronic one. Since 〈r〉ee ∼ n

−1/3
e ,and ne = ρN0/µe we can use

Eq. (43) to derive the following limits:
For i = H we have

ρ

µe
� 350T 3

6 (44)

while for i = He

ρ

µe
� 350

8
T 3

6 (45)

In Fig. 2, we map all the degeneracy zones of the equation of state of an
electron gas. Various stellar environments are shown in the map such as that
of main sequence stars (e.g. the sun), neutron stars, and the ones encountered
during explosive hydrogen burning and x-ray bursts. In the top left-hand-side
corner we observe two lines which represent the boundaries of validity of the
usual WS assumption given by Eq. (43), which leads to the derivation of the S
model. If we drop the zero-metallicity scenario, new lines will appear parallel to
the H − H, H − He, such as H − C, H − N, and so on. The larger the charge
of the metal included the further its line will be to the right of the two ones
shown in the map. Likewise, if we study other reaction with Z0 > 1 we will
observe an even more pronounced shift to the relevant boundaries. To the far
right of all these lines the WS limit assumed by the S model is supposed to be
valid for the description of the screening effects regardless of how degenerate
the electronic environment is. However, even screening condition (43) is abused
in very degenerate stars with a rich composition of heavy metals. It has now
become very clear that the S model cannot be safely used for reactions other
than the pp one in PD main-sequence stars (as often remarked by other authors
as well [3]).

Since the interelectronic distance is 〈r〉ee ∼ n
−1/3
e we can easily see that

〈r〉ee ∼
[

1 + θ (a)
eΦ

kT

]−1/3

(46)

therefore the phenomenon of degeneracy increases the average distance between
electrons while it obviously reduces the screening effect and thus thermonuclear
energy is released more slowly under degenerate conditions than under non-
degenerate ones. As the energy production rate is directly proportional to SEFs

http://link.springer.de/link/service/journals/10050/index.htm
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Fig. 2. Degeneracy zones of the equation of state of an electron gas. The solid
line (a = 2) separates the ND from the WD regime. The dashed line (a = −2)
stands for the ID limit while the dotted line (a = −5) stands for the SD limit.
Beyond the dash-dotted line (a = −10) the gas is in a CD state. The solid
lines labeled as H − H and H − He refer to the wrong WS limit (expressed by
Ineq. (43)) for a screened proton in a zero-metallicity plasma. Various stellar
environments are shown in the map such as that of a neutron star, or the ones
encountered during explosive hydrogen burning and x-ray bursts

it would be very interesting to study how that rate responds to turning off and
on the degeneracy effect. Salpeter’s SEF can be written [1]:

fs = exp
(
0.188Z1Z2ζρ1/2T

−3/2
6

)
(47)

where

ζ =

√
√
√
√

∑

i �=e

XiZ2
i

Ai
+ θ (a)

∑

i �=e

XiZi

Ai
(48)

In the most representative case of a zero-metallicity stellar plasma we have

ζ =

√

1 +
θ (a)
µe

(49)
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Fig. 3. Salpeter’s SEF for various stellar environments (zero metallicity scenario)
with respect to density when the temperature is kept constant. By assuming that
T6 = 10 (T6 = 5) the solid (the dotted) and the dashed (dash-dotted) curves are
derived where the former takes into account the electron degeneracy effect while
the latter assumes that degeneracy is turned off. The negative numbers attached
to the curves labeled as ”ON” represent the values of the degeneracy parameter
a described in the text

therefore we can write Salpeter’s SEF as follows:

fs (ρ, T6, µe) =
[
exp

(
0.188Z1Z2ρ

1/2T
−3/2
6

)]
√

1+ θ(ρ,T6)
µe (50)

which vividly depicts the influence of electron degeneracy. Note, for example,
that if there was no such think as degeneracy then θ (ρ, T6) = 1 and the previous
formula coincides with the one describing ND gases. Therefore, we can plot
Salpeter’s SEF for various environments turning on and off electron degeneracy
to illustrate its effect.

In Fig. 3, where we apply Eq. (50) to pp reactions in a zero metallicity plasma,
we can easily see that electron degeneracy effects always reduce Salpeter’s SEF to
a degree which varies according to the degree of degeneracy (i.e. the degeneracy
parameter). For small densities and high temperatures (e.g. the sun) the effect
is not very important but in more degenerate gases, as one would expect, there
is a notable reduction of the energy production rate.

http://link.springer.de/link/service/journals/10050/index.htm



Eur Phys J A 18, s01, s1–s25 (2003) Springer-Verlag 14

6 Nonlinear screening effects

If the DH potential ΦDH , which was derived via Ineqs. (15), is to be used inside
the tunnelling region of the usual WKB integral that appears in the penetration
factor Γ (E):

Γ (E) = exp
(−2

�

∫ rtp

R

[2µ(ΦDH(r) − E)]1/2dr

)

(51)

then Ineqs. (15) should also be valid for the DH potential throughout that region:

ZieΦDH (r)
kT

� 1 ⇔ ZiZ0e
2

kTr
exp

(

− r

RD

)

� 1 (52)

where the index i spans the entire ionic profile of the plasma.
Setting x = r/RD we arrive at

e−x

x
� (ln fmax)

−1 (53)

where fmax = exp
(

ZmaxZ0e2

RDkT

)
is Salpeter’s SEF for the heaviest ion in the plasma

interacting with our central nucleus Z0e .
Ineq. (53) provides us with the relative distances between the reacting nuclei

where Eq. (21) can be used. These distances will obviously be fractions of the
DH radius and since fmax

s > 1 Ineq. (53) will impose the condition x >> xmin.
That means that there is critical value for x below which the DH formalism is
not valid, or conversely that there is always a value x0 and a parameter β << 1
so that at all distances larger than x0 the weak screening condition (and for that
reason the DH model) is adequately satisfied. If we fix the desired accuracy(i.e.
β ) then x0 can be obtained through the following tuning equation

e−x0

x0
= β (ln fmax

s )−1 (54)

It is obvious that if we set β = 0.1 (see also [3]), then in the linearization of
Eq. (14) we make an error of 1% which is acceptable.

Likewise, we can select various values for β, according to the particular ther-
monuclear reaction at hand and the desired precision, thus tuning and gauging
the nonlinear screening effects disregarded by both the S and M models. In our
model we adopt the value of β = 0.1 which obviously provides a very accurate
approximation.

A vivid impression of how difficult it is for Ineq. (52) to be obeyed during the
tunnelling process can be obtained by the following argument: The tunnelling
region R < r < rtp (see Eq. (51)) is defined by the closest distance between the

reacting nuclei R = R1 + R2 = 1.3
(
A

1/3
1 + A

1/3
2

)
fm and the classical turning

point given by

e−xtp

xtp
=

E0

kT ln fs
(55)
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where E0 is the most effective energy of the binary reaction A1
Z1

X +A0
Z0

X given
for screened reactions by [6]:

E0 = 1.22
(
Z2

1Z2
0AT6

)1/3
ξ2/3 (x∗) , ξ (x∗) � e−x∗

(

1 +
x∗

2
+

x∗2

16

)

, x∗ =
rtp

RD

(56)

Therefore if we really want Ineq. (52) to be obeyed throughout the tunnelling
region then that should be the case at touching distances as well, that is:

ZmaxZ0e
2

1.3
(
A

1/3
0 + A

1/3
max

) exp



−
1.3

(
A

1/3
0 + A

1/3
max

)

RD



 � kT (57)

or else

T6 � 12880Z0Zmax(
A

1/3
0 + A

1/3
max

) (58)

If we assume, for example, the pp reaction in the same solar region as before
then the WS condition is always obeyed if T6 � 29274 which is a temperature
too high even for supernova explosions. This last condition proves that the weak-
screening condition is hardly ever obeyed across the entire Coulomb barrier under
any circumstances..

As an example, let us consider a main sequence star where the proton-proton
(pp) reaction takes place (e.g. the center of the sun). There we have RD =
24819 fm and of course fpp

s = 1.049, E0 = 5.6 keV , kT = 1.2 keV. The classical
turning point derived from Eq. (55) is then rtp = 10−2RD and the touching
distance is of the order of a few fermis, as usual. Let us assume for simplicity
that Zmax = 2 (that of helium) which means that fmax = 1.10. Then Ineq. (53)
shows that potential (21) is only valid when r >> 8. 7339 × 10−2RD. However,
the penetration factor Γ (E) that appears in the thermonuclear reaction rate
formalism and in fact derives Eq. (22), involves an integral running from R to
rtp. In other words the linearization we performed in Sect. 3. (especially for
ions with higher atomic numbers) forbids the use of Eq. (21) in the tunnelling
region, and the subsequent derivation of Salpeter’s formula. This is due to the
fact that the DH model was invented to handle global properties between ions
and electrons in electrolytes which interact at far larger distances than the ones
at which thermonuclear reactions take place.

A crucial question is whether there is any interference between the degeneracy
conditions and the WS one. Even in CD environments the screening condition
for ions is the same as in ND ones. For electrons in PD gases, however, it reads:

eΦ

kT
<< −a (59)

which is apparently less strict than in ND electron gases. For example, in ND
gases the ratio (eΦ/kT ) must be much smaller than in PD ones thus limiting
further the actual radius of validity of the screened Coulomb potential. In (at
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least) SD gases the strongest screening condition remains that of ions, namely
Ineq. (53). This is just as expected because in dense, (relatively) cold gases,
electrons play a minor role as the provide a (relatively) uniform negative back-
ground where ionic screening plays the major role, as it leads to a crystal-like
configuration.

7 A new model for screened thermonuclear reactions

Most authors who have dealt with screening corrections devise a mean field
screened Coulomb potential (see [14] and references therein)

Φ (r) =
Z0e

r
f

(
r

Rs

)

(60)

where Rs is the screening radius which depends on plasma characteristics and
is of course a function of its density and temperature. The potential energy of
the interaction between nuclei (Z0e, Z1e) is (Z1e) Φ (r) which, in turn, is used
in the evaluation of the action integral that appears in the WKB treatment
of the thermonuclear reaction rate. As the classical turning point lies deeply
inside the screening cloud, the usual approach drops higher terms appearing in
the integral and by a method, which is now well known [7], there appears an
exponential corrective term widely known as the screening enhancement factor
(SEF). Similar methods have been used in the treatment of screening phenomena
in laboratory astrophysical reactions [14]. A very common error in such studies
[15, 16] is disregarding the binary nature of the reaction rate rij between nuclei
i, j, which demands that its formula should be commutative that is i, j should
be interchangeable. This demand forced Mitler to use Helmholtz free energies
in his calculations instead of the usual energy shift which was erroneously used
by other authors [15, 16]. Mitler’s method, however, has made the arbitrary
assumption that at close distances from all nuclei in the plasma the charge
density is practically equal to the average electron density in the plasma. He
then assumed that at a certain distance from the target nucleus the charge
density is equal to the DH one, normalized appropriately.

We can now clearly state our two major objections to Mitler’s model:
First, although he presents some proof that near the origin the actual density

is slightly higher than the average electron density in the plasma, his rigid core
assumption is obviously unnatural. In screened plasmas the density is supposed
to follow a natural reduction pattern which at large distances should coincide
with the DH one.

Second, he calculates his critical distance modifying the DH density which
is well established at large distances. It is obvious from the previous analysis
that beyond a certain point calculated through Eq. (54) the DH density (and
the respective interaction energy) is an excellent approximation.

It is, therefore, much more natural to inverse Mitler’s method and adopt
the DH formalism beyond point x0 so that we can calculate the internal charge
density. To that end we assumed a very natural behavior for the charge density
around the nucleus and devised the model that follows:
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7.1 Evaluation of the critical distance and the central density

Let us assume that the charge density ρin (r) around the nucleus Z0e, instead of
being constant, is an exponentially decreasing function of distance of the form

ρin (r) = ρ (0) exp (−r/R0) (61)

At the critical point r0 the density assumes the usual DH form that is

ρin (r0) = ρDH (r0) =
(

− Z0e

4πR2
D

)
exp (−r0/RD)

r0
(62)

The critical point will of course be calculated using Eq. (54), which was thor-
oughly analyzed in the previous section while the central charge density will
be

ρ (0) = ρDH (x0) exp
(
x

′
0

)
(63)

where we have set x = r/RD, x0 = r0/RD , x
′
= r/R0, x

′
0 = r0/R0.

The DH charge density at r = RD is ρDH (RD) = − (e∗)−1 (
Z0e/4πR3

D

)
,

while the densities at x0 and RD are related through

ρin (x0) = ρDH (x0) =
e1−x0

x0
ρDH (RD) (64)

(note that we set e∗ = exp (1) to avoid confusion with the electron charge when
deemed necessary). Therefore using Eq. (63) the central density will be

ρ (0) =
e1+x

′
0−x0

x0
ρDH (RD) =

ex
′
0−x0

x0

(

− Z0e

4πR3
D

)

(65)

The parameter x
′
0 can be calculated using the charge normalization condition

∫

V

ρ (r) dV = −Z0e (66)

The meaning of that condition is that all the charge surrounding the nucleus
Z0e will be of course the total plasma charge (i.e. zero) minus the positive ion
itself which of course is missing from the total plasma as it is located in the
center of the configuration. Therefore the total charge of the configuration will
be negatively charged by the quantity (−Z0e).

Equation (66) can now be written
∫ r0

0
ρin (r) 4πr2dr +

∫ ∞

r0

ρDH (r) 4πr2dr = −Z0e (67)

Inserting the definition of the densities we have

4πρ (0) R3
0

∫ x
′
0

0
x2e−xdx − Z0e

∫ ∞

x0

xe−xdx = −Z0e (68)
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The integrals that appear in the previous expression are trivial and can be cal-
culated analytically. Therefore, if we set

I1

(
x

′
0

)
=

∫ x
′
0

0
x2e−xdx = −e−x

′
0

(
x

′2
0 + 2x

′
0 + 2

)
+ 2 (69)

and

I2 (x0) =
∫ ∞

x0

xe−xdx = e−x0 (x0 + 1) (70)

then Eq. (68) reads

4πρ (0) R3
0I1

(
x

′
0

)
− Z0eI2 (x0) = −Z0e (71)

Combining Eqs. (63), (69), (70) and Eq. (71) we obtain

ex
′
0

x
′3
0

I1

(
x

′
0

)
=

ex0

x2
0

[1 − I2 (x0)] (72)

Since R0 =
(
x0/x

′
0

)
RD, Eq. (72) and Eq. (54) give all the information we want

for our model.

7.2 Derivation of the screened Coulomb potential

Once the inner charge density has been derived, Poisson’s equation can produce
the screened Coulomb potential around the reacting nuclei:

∇2Φ = −4πρ (0) exp (−r/R0) (73)

obeying the boundary conditions

lim
r→0

Φ (r) =
Z0e

r
, lim

r→r0
Φ (r) = ΦDH (r) (74)

The solution is of the form:

Φ (r) =
Z0e

r
F (r) (75)

where F (r) obeys the boundary conditions

F (0) = 1, F (r0) = exp (−r0/RD) (76)

Having assumed spherical symmetry for the screening effect Eq. (73) can be
written

d2Φ

dr2 +
2
r

dΦ

dr
= −4πρ (0) exp (−r/R0) (77)
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Combining Eq. (75), and Eq. (77) we can derive the general form of the screened
Coulomb potentials which correspond to our charge density distribution, that is

F (r) = c2 + c1r − 4πρ (0) R3
0

Z0e

(

2 +
r

R0

)

e−r/R0 (78)

Using the respective boundary conditions given by Eqs. (76) and after some
tedious algebra the constants c2, c1 are:

c2 = 1 − 2
x2

0

x
′3
0

ex
′
0−x0 (79)

and

c1 = −R−1
D

[
1
x0

− e−x0

x0
− 2

x0

x
′3
0

ex
′
0−x0 +

x0

x
′3
0

(
2 + x

′
0

)
e−x0

]

(80)

7.3 Derivation of the screening enhancement factor (SEF)

Having obtained both the charge density and the associated screened Coulomb
potential the screening energy can be obtained in the following way: As noted
before, Mitler makes use of the free energies of the cloud-ion configuration. Al-
though Mitler’s constant density allows the derivation of an analytic formula for
the screening energy the author’s model would involve a lot more work. There-
fore, in the present paper we will only obtain SEFs for some special cases, which,
however, cover a wide spectrum of astrophysical reactions:

a) The quantity Z1eΦ (r) is symmetric in 1 and 2 and the impinging nucleus
Z1e is considered unscreened, which means that it carries no screening cloud as
it collides with ion Z0e which creates the potential Φ (r) .

b) The quantity Z1eΦ (r) is not symmetric in 1 and 2 but the charge Z0e is
considerably larger than Z1e so that we can safely disregard the cloud associated
with nucleus Z1e which can be considered unscreened. In such a case, although
the quantity Z1eΦ (r) is not symmetric, the classical turning point lies so deeply
inside the screening configuration that it makes no difference whether the cloud
is attributed to Z0e or Z1e.

If the electron speed was much higher than that of the reacting nuclei as
suggested in [3], then we could take into account the cloud perturbation induced
by the projectile by setting Z0 → (Z0 + 1) , since in that case the cloud would
respond fast enough. However, this is not the case since we should not compare
the electron speed to the maximum thermal energy of ions as in [3], but instead
we should compare the electron speed to the most effective energy of nuclear in-
teraction. As is well known the latter is larger than the former in non-relativistic
gases. We solve that problem by assuming that there are two limits: The sudden
limit (SD) where we assume that the cloud remains perfectly rigid during tun-
nelling and the adiabatic limit (AD) where we assume that the cloud responds
so fast that during tunnelling the source of polarization is not Z0 but Z0 + 1,
instead. Therefore the central charge to be used will be Z∗

0e so that:

Z0 < Z∗
0 < Z0 + 1 (81)
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Obviously for heavily charged nuclei (i.e. Z0 � 1 ) both limits yield practi-
cally the same result.

Since the classical turning point for a particular reaction is always much
smaller than R0 the screened Coulomb potential to be used across the barrier is
truncated so that

Φ (r) =
Z0e

r
− Z0e

RD
G

(
x0, x

′
0

)
+ O

(
r2) (82)

where the quantity G
(
x0, x

′
0

)
is

G
(
x0, x

′
0

)
=

1
x0

− e−x0

x0
− 2

x0

x
′3
0

ex
′
0−x0 +

x0

x
′3
0

(
2 + x

′
0

)
e−x0 +

x0

x
′2
0

ex
′
0−x0 (83)

In the above two cases, following the usual mechanism [6], we derive a shift
in the relative energy (the screening energy)

Ue =
Z0Z1e

2

RD
G

(
x0, x

′
0

)
(84)

with the modification Z0 → Z∗
0 for protons impinging on heavily charged nuclei

(e.g. reactions of the rp process.
As we know the DH screening energy is UDH = Z0Z0e

2R−1
D and the respec-

tive SEF is given by Eq. (22). Thus, if we use the definition of G
(
x0, x

′
0

)
the

screening energy of the new model will be

Ue = UDHG
(
x0, x

′
0

)
(85)

while using the definition of Salpeter’s fs the new improved SEF will be:

f = f
G

(
x0,x

′
0

)

s (86)

Equation (86) is the formula that should replace Salpeter’s in all cases while
Mitler’s is replaced only in astrophysical reaction which satisfy the two above
mentioned conditions.

8 Application of the new model to the solar pp reaction
and the associated SNF

Let us apply our model to the pp reaction is the sun and see how it modifies the
SNF. In the solar plasma we can safely assume that the heaviest metal which
exists in non-negligible quantities and can have a (very small indeed) effect on
the DH radius is oxygen that burns last in the CNO cycle so that Zmax = 8.
All other metals with Z > 8 can be totally disregarded in the plasma. We will
apply our model in the solar region of maximum energy production that is [17]
at a distance of 0.075 solar radii where T6 = 14 and ρ = 105 g/cm3. At such a
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distance the most important isotopic abundances [17] (the fractions by mass of
hydrogen (X) and helium (Y )) are X = 0.48 and Y = 0.5. Then Zmax = 8, and
of course fmax

S (Zmax = 8) = 1.52 so that Eq. (54) reads exp (−x0) = 0.237x0

with a solution of x0 = 1. 1781. Using Eq. (72) we obtain x
′
0 = 2.716. Therefore

the critical point is r0 = 1.1781RD while the inner screening radii will now be
R0 = 0.433RD. Thus, the DH model cannot be used at distances shorter than
r = 1.178RD without committing an error. On the other hand the central charge
density will be given by Eq. (65) so that ρ (0) � 10ρDH (RD) . Using Eq. (85) we
see that our screening energy is Ue/UDH = 0.87. If instead we had assumed that
Zmax = 2, as we did before, the critical point would have been x0 = 0. 55129
while at the same time x

′
0 = 2.0. Then the central density would be ρ (0) �

134ρDH (RD) and the screening energy Ue/UDH = 0.93 (The same effects would
be observed if we set β = 0.4 and retain the value of Zmax = 8). Note that the
smallest possible value of x0 that can be derived via the present model at solar
conditions is obtained for a purely hydrogen (OCP) plasma (ρ = 105, T6 = 14)
by abusing Ineq. (53) to its limits (i.e. by setting β = 1, Zmax = 1). In such
case we have x0 = 0.0 6867 which yields through Eq. (72) x

′
0 = 1.52. These

values yield a central density of ρ (0) = 170ρDH (RD) and a screening energy of
Ue/UDH = 0.99. For the only possible thermonuclear reaction in such a plasma
(i.e. hydrogen) we have a classical turning point xtp = 0.036 and a DH radius
RD = 16261fm. In fact we see that, for all reactions, as x0 → 0, then x

′
0 → 1.45

and Ue/UDH → 1 that is, as expected, we derive the same S model screening
energy and of course the same infinite central density.

A very important argument is that the accuracy of our model is greatly im-
proved if we are able to make assumptions for the stellar composition which re-
duce the distance (x0 − xtp), thus reducing the uncertainty across the barrier. If
the plasma composition allowed the penetration of x0 deeply into the tunnelling
region (i.e. x0 < xtp, which is not possible for normal stellar environments) then
we could really achieve maximum precision. This is due to the fact that the DH
density is well established for x > x0 while Eq. (61) used at x < x0 is artificial
and depends heavily on the tuning accuracy that we adopt each time.

According to the above calculations for the pp reaction in the sun the SEF
value obtained through the present model is given as a function of Salpeter’s
SEF

fpp = (fpp
s )q (87)

where 0.87 < q < 0.93 so that

1. 042 < fpp < 1.045. (88)

Let us now compare our results to Mitler’s: The critical distance where,
according to the M model, the charge density abruptly ceases to be equal to the
average electron density and assumes a DH form is roughly r0 = 0.1RD. (i.e.
xM

0 = 0.1 ). We can easily observe that, if we follow the M model, then across
the tunnelling region which starts at the classical turning point (rtp = 0.01RD,
see Sect. 6) the collision takes place through a rigid electronic cloud barren of
any ions or any kind of charge density variation. According to the M formulas
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we obtain a screening shift which is 95% (or 92% if the second proton is also
screened) of that obtained through the S model. Thus for the pp reaction we have
fpp

Mit = 1.046 (or 1.045 for both protons screened-see also [9]), which coincides
with the most probable SEF of our model. Note that it matters very little if we
consider both protons screened or only one, just as we assumed in our model.
We see that although both Mitler’s model and the present one give a smaller
SEF than the S model there is an important difference between them. Actually,
in order to obtain Mitler’s critical distance we should tune our weak-screening
accuracy so that our x0 coincides with xM

0 . If we assume that Zmax = 2 the
value x0 = xM

0 can only be obtained by setting β = 0.8 in Eq. (54) which
is an extremely insufficient weak-screening assumption as it abuses Ineq. (15)
to its limits. As regards the constant density assumed by Mitler we see that
when Zmax = 2 our model gives for pp reactions ρin (x0) = 0.13ρ (0), ρin (xtp) =
0.96ρ (0) and ρin

(
xM

0
)

= 0.69ρ (0), which means that Mitler’s assumption is not
justified for the distances he claims (i.e. xM

0 = 0.1) but it is perfectly justified
across the tunnelling region. Moreover, we need to underline that the actual
value of the central density ρ (0) is immaterial to the novel model as it just an
artificial one and its only purpose is to derive the correct SEF. Mitler’s model, on
the other hand, does exhibit a very weak dependence on the actual value of the
central density [9] which for solar conditions can be totally disregarded. Owing
to the last two aspects of compatibility between the two models it is plausible
that they should yield roughly the same SEFs, as is actually the case.

Therefore the most accurate value of the pp SEF in the sun is of course the
upper limit of the double inequality (88) with an uncertainty which obviously lies
within its upper and lower limit. If instead we had assumed that both protons
are screened then that would have yielded a negligibly smaller SEF.

We can now study the uncertainties induced on the solar neutrino fluxes
(SNF) by the present improvements of Salpeter’s and Mitler’s models employing
the proportionality formulas [9, 6] which relate the screened (SC) and unscreened
(NOS) SNF. In these formulas we assume that all reactions are unscreened except
for the pp one in order to isolate the effect for the most important solar reaction.
In such a case

ΦSC
pp

ΦNOS
pp

= (fpp
s )0.14q

,
ΦSC

Be

ΦNOS
Be

= (fpp
s )−1.25q

,

ΦSC
B

ΦNOS
B

= (fpp
s )−2.95q

,
ΦSC

N,O

ΦNOS
N,O

= (fpp
s )−2.75q (89)

In Fig. 4. we can observe the dependence of the solar neutrino fluxes (SNF)
on the (uncertainty of the) proton-proton SEF fpp. The ratio of the screened
SNF

(
ΦSC

)
versus the unscreened ones

(
ΦNOS

)
are given for various neutrino

producing solar reactions with respect to the q quantity defined in the text. The
most probable values given by the new improved model are those given at q =
0.93, while the values corresponding to Salpeter’s formula are those at q = 1. The
vertical bars at q = 0.87 and q = 0.93 represents the boundaries of reasonable
assumptions for the solar composition and the WS limit. To validate the region
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Fig. 4. The dependence of the solar neutrino fluxes (SNF) on the (uncertainty
of the) proton-proton SEF fpp. The ratio of the screened SNF

(
ΦSC

)
versus

the unscreened ones
(
ΦNOS

)
are given for various neutrino producing solar re-

actions with respect to the q quantity defined in the text. The most probable
values given by the new improved model are those given at q = 0.93, while the
values corresponding to Salpeter’s formula are those at q = 1. The vertical bars
represents the boundaries of reasonable assumptions for the solar composition
and the WS limit

lying outside those barriers of uncertainty either we have to assume that the
solar plasma has a different composition that the standard model predicts or
to compromise our weak screening linearization by tuning down the accuracy so
that β > 0.1. Note that if we attempt to tighten the WS condition assuming that
β < 0.1, then we actually push the critical point x0 further from the classical
turning point which reduces the accuracy of the model.

Admittedly, there is some interference between the screening uncertainties of
all neutrino producing reactions whose effects sometimes cancel each other [9].
Other authors [19] evaluate the total uncertainty by simply using the S model.
We might as well follow their example and use the model derived in this paper
which is more accurate than the S one anyway. However that approach: a) would
cloud the effect of the most important solar reaction (i.e. pp) for which our model
is legitimate and b) would abuse our model (just at it abuses the S one) since
both conditions (a,b) of Sect. 5 C would be violated.

The compatibility of our model to the measurable macroscopic solar quan-
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tities is well established. For example, the enhancement of the energy produc-
tion due to screening is subject to a rigid constraint imposed by the exper-
imentally measured solar luminosity which must be kept constant, regardless
of the solar model selected each time. Thus, the ratio of the screened tem-
perature

(
TSC

)
versus the unscreened one

(
TNOS

)
is given by the quantity [9]

(
TSC/TNOS

)
= (fpp)−1/8

. On the other hand the ratio of ρ/T 3 is approximately
constant along the whole stellar profile so that [18]

(
ρSC/ρNOS

)
= (fpp)−3/8

. It
is easy to see that the new model is perfectly compatible with the density and
the temperature of the standard solar model.

9 Discussion and conclusions

In this paper we first derive the ND SEF from the first principles of the Thomas-
Fermi theory whose microscopic nature allows the study of nonlinear screening
effects as opposed to the macroscopic nature of Boltzmann’s statistical theory
employed by other authors [1]. In a recent paper the nonlinear corrections to
Salpeter’s formula were studied by numerically solving Poisson’s equation [19].
In the present work we present a very transparent analytical investigation which
allows us to control the associated error by tuning the weak screening condition
at will.

On the other hand, in a PD environment, the S model takes into account
degeneracy effects by the introduction of a degeneracy factor θ (a) whose nu-
merical calculation involves some improper integrals which delay the computing
process in stellar evolution codes. In this paper, using the principles of the TF
theory, there is produced, for the first time to our knowledge, a very handy ana-
lytic degeneracy factor, which can be readily used in the DH radius involved in
Salpeter’s, Mitler’s and the author’s models.

Salpeter’s SEF was derived on the assumption that the DH model can be used
inside the tunnelling region when calculating the penetration factor in thermonu-
clear reaction rates. However, as we have proved there is always an internuclear
distance inside that region where the DH model breaks down because the as-
sumptions that led to its derivation are no longer valid (i.e. Ineqs. (15)).

Mitler, on the other hand, derived a SEF for all densities by making an
assumption which we prove here to be correct, to some extent, for the weakly
screened solar environment. He assumed that the charge density around ions in
all stellar environments is equal to the average electron density in the plasma.
He then evaluated some critical distance from the ion where the constant density
model is abruptly replaced by the DH model. The alarming discontinuity that
appears at that critical distance is disregarded as is the unnatural assumption
of a rigid electron core around the ion in all stellar plasmas. Admittedly Mitler
devotes a few lines to qualitatively justify his assumptions but, as the author
has already asserted, this effort doesn’t lift their arbitrariness.

A new model is presented here which avoids Mitler’s constant electron density
assumption and remedies the break-down of the DH model inside the tunnelling
region from which Salpeter’s model suffers. Instead of making Mitler’s assump-
tion about the inner density, we have decided to work backwards. That is we
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use the TF model to establish the minimum distance from the ion where the
DH model is correct and we seek the inner density’s details by making the most
natural assumption that the charge density from the ion to the critical point is
an exponentially decreasing function of distance. This way we have full control of
the DH model nonlinearities, since by tuning the WS condition we can actually
take into account the error we commit in the calculation of screening effects.
Note that this novel model tends to the S one when its nonlinear accuracy is
tuned down to a minimum, which shows vividly the improvement over the M
model and especially of its generator, the S one.

In short the new model should be used as follows: In weakly screened ther-
monuclear stellar plasmas consisting mainly of hydrogen and helium we evaluate
x0 through Eq. (54) setting β = 0.1 and Zmax = 2. Then we resort to Eq. (72) in
order to evaluate x

′
0. The novel SEF, which takes into account degeneracy and

nonlinear screening effects, will be given by Eq. (86), which is actually Salpeter’s
SEF raised to the power of G

(
x0, x

′
0

)
(given by Eq. (83).

The new model is particularly valid for pp reactions as well as for reactions
of protons with heavily charged nuclei (e.g. the rp process currently under study
by the author). We have applied the improved model to the solar pp reaction
and have shown that the respective non-linear correction to Salpeter’s SEF is
at most (∼ 1%), which coincides with the results of [19]. We then isolate the
effect of the novel pp SEF on the solar neutrino fluxes evaluating the associated
uncertainly which is now confined in a robust way within very reliable limits.
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